Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Hepatol ; 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20244104

ABSTRACT

BACKGROUND AND AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n=6) and from patients with an initial diagnosis of AIH (n=9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune like hepatitis (DI-AILH). In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor (BCR) sequencing showed that T- and B-cell clones were more dominant in VILI than in AIH. In addition, many T-cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6 and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 vaccination-induced liver injury is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. VILI may be a separate entity, which is distinct from AIH and more closely related to DI-AILH. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury. Our analysis shows that COVID-19 vaccine-induced liver injury shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that vaccine-induced liver injury is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 vaccine-induced liver injury will recover completely and do not develop long-term autoimmune hepatitis.

2.
Res Pract Thromb Haemost ; 7(1): 100025, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2278318

ABSTRACT

Background: Conflicting results have been reported on platelet activity ex vivo and responsiveness in vitro among patients with COVID-19 with or without thromboembolic complications. Objectives: To assess platelet reactivity in patients with moderate disease at early stages of COVID-19. Methods: We performed a prospective, descriptive analysis of 100 consecutive patients presenting with suspected SARS-CoV-2 infection at University Medical Center Freiburg during the first or second wave of the pandemic. Following polymerase chain reaction testing and compliance with study inclusion criteria, 20 SARS-CoV-2-positive and 55 SARS-CoV-2-negative patients (serving as patient controls) were enrolled. In addition, 15 healthy subjects were included. Platelet reactivity was assessed using whole-blood impedance aggregometry and flow cytometry in response to various agonists. Results: Platelet aggregation was significantly impaired in the patients with COVID-19 compared with that in the patient controls or healthy subjects. The reduced platelet responsiveness in the patients with COVID-19 was associated with impaired activation of GPIIb/IIIa (αIIbß3). In contrast, low expression of P-selectin at baseline and intact secretion upon stimulation in vitro suggest that no preactivation in vivo, leading to "exhausted" platelets, had occurred. The proportion of circulating platelet-neutrophil complexes was significantly higher in the patients with COVID-19 (mean ± SD, 41% ± 13%) than in the patient controls (18% ± 7%; 95% CI, 11.1-34.1; P = .0002) or healthy subjects (17% ± 4%; 95% CI, 13.8-33.8; P < .0001). An analysis of neutrophil adhesion receptors revealed upregulation of CD11b (α-subunit of αMß2) and CD66b (CEACAM8) but not of CD162 (PSGL-1) in the patients with COVID-19. Conclusion: Despite reduced platelet responsiveness, platelet-neutrophil complexes are increased at early stages of moderate disease. Thus, this cellular interaction may occur during COVID-19 without preceding platelet activation.

3.
J Hepatol ; 78(5): 1017-1027, 2023 05.
Article in English | MEDLINE | ID: covidwho-2242931

ABSTRACT

BACKGROUND & AIMS: Liver transplant recipients (LTRs) demonstrate a reduced response to COVID-19 mRNA vaccination; however, a detailed understanding of the interplay between humoral and cellular immunity, especially after a third (and fourth) vaccine dose, is lacking. METHODS: We longitudinally compared the humoral, as well as CD4+ and CD8+ T-cell, responses between LTRs (n = 24) and healthy controls (n = 19) after three (LTRs: n = 9 to 16; healthy controls: n = 9 to 14 per experiment) to four (LTRs: n = 4; healthy controls: n = 4) vaccine doses, including in-depth phenotypical and functional characterization. RESULTS: Compared to healthy controls, development of high antibody titers required a third vaccine dose in most LTRs, while spike-specific CD8+ T cells with robust recall capacity plateaued after the second vaccine dose, albeit with a reduced frequency and epitope repertoire compared to healthy controls. This overall attenuated vaccine response was linked to a reduced frequency of spike-reactive follicular T helper cells in LTRs. CONCLUSION: Three doses of a COVID-19 mRNA vaccine induce an overall robust humoral and cellular memory response in most LTRs. Decisions regarding additional booster doses may thus be based on individual vaccine responses as well as evolution of novel variants of concern. IMPACT AND IMPLICATIONS: Due to immunosuppressive medication, liver transplant recipients (LTR) display reduced antibody titers upon COVID-19 mRNA vaccination, but the impact on long-term immune memory is not clear. Herein, we demonstrate that after three vaccine doses, the majority of LTRs not only exhibit substantial antibody titers, but also a robust memory T-cell response. Additional booster vaccine doses may be of special benefit for a small subset of LTRs with inferior vaccine response and may provide superior protection against evolving novel viral variants. These findings will help physicians to guide LTRs regarding the benefit of booster vaccinations.


Subject(s)
COVID-19 , Liver Transplantation , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Immunity, Cellular , RNA, Messenger/genetics , Antibodies, Viral , Transplant Recipients
4.
Pathogens ; 12(2)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2225488

ABSTRACT

Adaptive immune responses play an important role in the clinical course of SARS-CoV-2 infection. While evaluations of the virus-specific defense often focus on the humoral response, cellular immunity is crucial for the successful control of infection, with the early development of cytotoxic T cells being linked to efficient viral clearance. Vaccination against SARS-CoV-2 induces both CD4+ and CD8+ T cell responses and permits protection from severe COVID-19, including infection with the currently circulating variants of concern. Nevertheless, in immunocompromised individuals, first data imply significantly impaired SARS-CoV-2-specific immune responses after both natural infection and vaccination. Hence, these high-risk groups require particular consideration, not only in routine clinical practice, but also in the development of future vaccination strategies. In order to assist physicians in the guidance of immunocompromised patients, concerning the management of infection or the benefit of (booster) vaccinations, this review aims to provide a concise overview of the current knowledge about SARS-CoV-2-specific cellular immune responses in the vulnerable cohorts of cancer patients, people living with HIV (PLWH), and solid organ transplant recipients (SOT). Recent findings regarding the virus-specific cellular immunity in these differently immunocompromised populations might influence clinical decision-making in the future.

5.
Nat Commun ; 13(1): 4631, 2022 08 08.
Article in English | MEDLINE | ID: covidwho-1977998

ABSTRACT

Immunization with two mRNA vaccine doses elicits robust spike-specific CD8+ T cell responses, but reports of waning immunity after COVID-19 vaccination prompt the introduction of booster vaccination campaigns. However, the effect of mRNA booster vaccination on the spike-specific CD8+ T cell response remains unclear. Here we show that spike-specific CD8+ T cells are activated and expanded in all analyzed individuals receiving the 3rd and 4th mRNA vaccine shots. This CD8+ T cell boost response is followed by a contraction phase and lasts only for about 30-60 days. The spike-specific CD8+ T memory stem cell pool is not affected by the 3rd vaccination. Both 4th vaccination and breakthrough infections with Delta and Omicron rapidly reactivate CD8+ T memory cells. In contrast, neutralizing antibody responses display little boost effect towards Omicron. Thus, COVID-19 mRNA booster vaccination elicits a transient T effector cell response while long-term spike-specific CD8+ T cell immunity is conserved to mount robust memory recall targeting emerging variants of concern.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , RNA, Messenger , Vaccines, Synthetic , mRNA Vaccines
6.
Nat Microbiol ; 7(5): 675-679, 2022 05.
Article in English | MEDLINE | ID: covidwho-1815548

ABSTRACT

Continuously emerging variants of concern (VOCs) sustain the SARS-CoV-2 pandemic. The SARS-CoV-2 Omicron/B.1.1.529 VOC harbours multiple mutations in the spike protein associated with high infectivity and efficient evasion from humoral immunity induced by previous infection or vaccination. By performing in-depth comparisons of the SARS-CoV-2-specific T-cell epitope repertoire after infection and messenger RNA vaccination, we demonstrate that spike-derived epitopes were not dominantly targeted in convalescent individuals compared to non-spike epitopes. In vaccinees, however, we detected a broader spike-specific T-cell response compared to convalescent individuals. Booster vaccination increased the breadth of the spike-specific T-cell response in convalescent individuals but not in vaccinees with complete initial vaccination. In convalescent individuals and vaccinees, the targeted T-cell epitopes were broadly conserved between wild-type SARS-CoV-2 variant B and Omicron/B.1.1.529. Hence, our data emphasize the relevance of vaccine-induced spike-specific CD8+ T-cell responses in combating VOCs including Omicron/B.1.1.529 and support the benefit of boosting convalescent individuals with mRNA vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, T-Lymphocyte/genetics , Humans , RNA, Messenger/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
7.
J Hepatol ; 77(3): 653-659, 2022 09.
Article in English | MEDLINE | ID: covidwho-1799844

ABSTRACT

BACKGROUND & AIMS: Autoimmune hepatitis episodes have been described following SARS-CoV-2 infection and vaccination but their pathophysiology remains unclear. Herein, we report the case of a 52-year-old male, presenting with bimodal episodes of acute hepatitis, each occurring 2-3 weeks after BNT162b2 mRNA vaccination. We sought to identify the underlying immune correlates. The patient received oral budesonide, relapsed, but achieved remission under systemic steroids. METHODS: Imaging mass cytometry for spatial immune profiling was performed on liver biopsy tissue. Flow cytometry was performed to dissect CD8 T-cell phenotypes and identify SARS-CoV-2-specific and EBV-specific T cells longitudinally. Vaccine-induced antibodies were determined by ELISA. Data were correlated with clinical laboratory results. RESULTS: Analysis of the hepatic tissue revealed an immune infiltrate quantitatively dominated by activated cytotoxic CD8 T cells with panlobular distribution. An enrichment of CD4 T cells, B cells, plasma cells and myeloid cells was also observed compared to controls. The intrahepatic infiltrate showed enrichment for CD8 T cells with SARS-CoV-2-specificity compared to the peripheral blood. Notably, hepatitis severity correlated longitudinally with an activated cytotoxic phenotype of peripheral SARS-CoV-2-specific, but not EBV-specific, CD8+ T cells or vaccine-induced immunoglobulins. CONCLUSIONS: COVID-19 vaccination can elicit a distinct T cell-dominant immune-mediated hepatitis with a unique pathomechanism associated with vaccination-induced antigen-specific tissue-resident immunity requiring systemic immunosuppression. LAY SUMMARY: Liver inflammation is observed during SARS-CoV-2 infection but can also occur in some individuals after vaccination and shares some typical features with autoimmune liver disease. In this report, we show that highly activated T cells accumulate and are evenly distributed in the different areas of the liver in a patient with liver inflammation following SARS-CoV-2 vaccination. Moreover, within the population of these liver-infiltrating T cells, we observed an enrichment of T cells that are reactive to SARS-CoV-2, suggesting that these vaccine-induced cells can contribute to liver inflammation in this context.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hepatitis A , Hepatitis , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Inflammation , Male , SARS-CoV-2 , Vaccination/adverse effects , Vaccination/methods
8.
J Thromb Thrombolysis ; 53(4): 788-797, 2022 May.
Article in English | MEDLINE | ID: covidwho-1568387

ABSTRACT

The complement system (CS) plays a pivotal role in Coronavirus disease 2019 (COVID-19) pathophysiology. The objective of this study was to provide a comparative, prospective data analysis of CS components in an all-comers cohort and COVID-19 patients. Patients with suspected COVID-19 infection admitted to the Emergency department were grouped for definite diagnosis of COVID-19 and no COVID-19 accordingly. Clinical presentation, routine laboratory and von Willebrand factor (vWF) antigen as well as CS components 3, 4 and activated 5 (C5a) were assessed. Also, total complement activity via the classical pathway (CH50) was determined. Levels of calprotectin in serum were measured using an automated quantitative lateral flow assay. We included 80 patients in this prospective trial. Of those 19 (23.7%) were tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with COVID-19 had higher levels of CS components 5a and 4 (54.79 [24.14-88.79] ng/ml vs. 35 [23.15-46.1] ng/ml; p = 0.0433 and 0.3772 [± 0.1056] g/L vs. 0.286 [0.2375-0.3748] g/L; p = 0.0168). COVID-19 patients had significantly higher levels of vWF antigen when compared to the control group (288.3 [± 80.26] % vs. 212 [151-320] %; p = 0.0469). There was a significant correlation between CS C3 and 5a with vWF antigen (rs = 0.5957 [p = 0.0131] and rs = 0.5015 [p = 0.042]) in COVID-19 patients. There was no difference in calprotectin plasma levels (4.786 [± 2.397] µg/ml vs. 4.233 [± 2.142] µg/ml; p = 0.4175) between both groups. This prospective data from a single centre all-comers cohort accentuates altered levels of CS components as a distinct feature of COVID-19 disease. Deregulation of CS component 3 and C5a are associated with increased vWF antigen possibly linking vascular damage to alternative CS activation in COVID-19.


Subject(s)
COVID-19 , COVID-19/diagnosis , Emergency Service, Hospital , Humans , Immunologic Factors , Leukocyte L1 Antigen Complex , Prospective Studies , SARS-CoV-2 , von Willebrand Factor/analysis
9.
Nat Commun ; 12(1): 6405, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1505001

ABSTRACT

The origin of SARS-CoV-2 variants of concern remains unclear. Here, we test whether intra-host virus evolution during persistent infections could be a contributing factor by characterizing the long-term SARS-CoV-2 infection dynamics in an immunosuppressed kidney transplant recipient. Applying RT-qPCR and next-generation sequencing (NGS) of sequential respiratory specimens, we identify several mutations in the viral genome late in infection. We demonstrate that a late viral isolate exhibiting genome mutations similar to those found in variants of concern first identified in UK, South Africa, and Brazil, can escape neutralization by COVID-19 antisera. Moreover, infection of susceptible mice with this patient's escape variant elicits protective immunity against re-infection with either the parental virus and the escape variant, as well as high neutralization titers against the alpha and beta SARS-CoV-2 variants, B.1.1.7 and B.1.351, demonstrating a considerable immune control against such variants of concern. Upon lowering immunosuppressive treatment, the patient generated spike-specific neutralizing antibodies and resolved the infection. Our results suggest that immunocompromised patients could be a source for the emergence of potentially harmful SARS-CoV-2 variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Genome, Viral , Humans , Immune Evasion , Immunocompromised Host , Male , Middle Aged , Mutation , Neutralization Tests , Phylogeny , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
10.
Nature ; 597(7875): 268-273, 2021 09.
Article in English | MEDLINE | ID: covidwho-1328849

ABSTRACT

SARS-CoV-2 spike mRNA vaccines1-3 mediate protection from severe disease as early as ten days after prime vaccination3, when neutralizing antibodies are hardly detectable4-6. Vaccine-induced CD8+ T cells may therefore be the main mediators of protection at this early stage7,8. The details of their induction, comparison to natural infection, and association with other arms of vaccine-induced immunity remain, however, incompletely understood. Here we show on a single-epitope level that a stable and fully functional CD8+ T cell response is vigorously mobilized one week after prime vaccination with bnt162b2, when circulating CD4+ T cells and neutralizing antibodies are still weakly detectable. Boost vaccination induced a robust expansion that generated highly differentiated effector CD8+ T cells; however, neither the functional capacity nor the memory precursor T cell pool was affected. Compared with natural infection, vaccine-induced early memory T cells exhibited similar functional capacities but a different subset distribution. Our results indicate that CD8+ T cells are important effector cells, are expanded in the early protection window after prime vaccination, precede maturation of other effector arms of vaccine-induced immunity and are stably maintained after boost vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination , Vaccines, Synthetic/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Cells, Cultured , Epitopes, T-Lymphocyte/immunology , Humans , Immunization, Secondary , Immunologic Memory/immunology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Time Factors
11.
Immunity ; 54(7): 1594-1610.e11, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1281436

ABSTRACT

COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.


Subject(s)
Brain/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Microglia/immunology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Cell Communication , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Immune Checkpoint Proteins/metabolism , Inflammation , Lymphocyte Activation , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Olfactory Bulb/immunology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Respiratory Insufficiency/immunology , Respiratory Insufficiency/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
12.
Nat Commun ; 12(1): 2133, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1174672

ABSTRACT

Our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still developing. We perform an observational study to investigate seroprevalence and immune responses in subjects professionally exposed to SARS-CoV-2 and their family members (155 individuals; ages 5-79 years). Seropositivity for SARS-CoV-2 Spike glycoprotein aligns with PCR results that confirm the previous infection. Anti-Spike IgG/IgM titers remain high 60 days post-infection and do not strongly associate with symptoms, except for fever. We analyze PBMCs from a subset of seropositive and seronegative adults. TLR7 agonist-activation reveals an increased population of IL-6+TNF-IL-1ß+ monocytes, while SARS-CoV-2 peptide stimulation elicits IL-33, IL-6, IFNa2, and IL-23 expression in seropositive individuals. IL-33 correlates with CD4+ T cell activation in PBMCs from convalescent subjects and is likely due to T cell-mediated effects on IL-33-producing cells. IL-33 is associated with pulmonary infection and chronic diseases like asthma and COPD, but its role in COVID-19 is unknown. Analysis of published scRNAseq data of bronchoalveolar lavage fluid (BALF) from patients with mild to severe COVID-19 reveals a population of IL-33-producing cells that increases with the disease. Together these findings show that IL-33 production is linked to SARS-CoV-2 infection and warrant further investigation of IL-33 in COVID-19 pathogenesis and immunity.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Interleukin-33/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , COVID-19/virology , Child , Child, Preschool , Female , Humans , Interleukin-33/metabolism , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Young Adult
13.
Am J Hypertens ; 34(3): 278-281, 2021 04 02.
Article in English | MEDLINE | ID: covidwho-1169620

ABSTRACT

BACKGROUND: The role of the renin-angiotensin-aldosterone system (RAAS) in coronavirus disease 2019 (COVID-19) is controversially discussed. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells by binding to angiotensin-converting enzyme 2 (ACE2) and activity of the RAAS may affect susceptibility to SARS-CoV-2 infection and outcome of patients with COVID-19. METHODS: In this prospective single-center study, we determined the serum levels of ACE2, angiotensin II, and aldosterone in patients with COVID-19 compared with control patients presenting with similar symptoms in the emergency unit. RESULTS: We analyzed serum samples from 24 SARS-CoV-2 positive and 61 SARS-CoV-2 negative patients. SARS-CoV-2 positive and control patients did not differ in baseline patients characteristics, symptoms, and clinical presentation. Mean serum concentrations of ACE2, angiotensin II, and aldosterone did not differ between the SARS-CoV-2 positive and the control group. In line with this, serum potassium as surrogate parameter for RAAS activity and blood pressure were similar in both groups. CONCLUSIONS: In summary, we did not find evidence for altered RAAS activity including angiotensin II, aldosterone, or potassium levels, and blood pressure in patients with COVID-19. CLINICAL TRIALS REGISTRATION: Trial Number DRKS00021206.


Subject(s)
Aldosterone/blood , Angiotensin II/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19 , Hypertension , Potassium/blood , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Blood Pressure Determination/statistics & numerical data , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/physiopathology , Female , Germany/epidemiology , Humans , Hypertension/blood , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/physiopathology , Male , Middle Aged , Outcome Assessment, Health Care , Prospective Studies , Renin-Angiotensin System/physiology , SARS-CoV-2/isolation & purification
14.
J Infect Dis ; 223(5): 775-784, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-1117038

ABSTRACT

BACKGROUND: Severe courses of coronavirus disease 2019 (COVID-19) are associated with elevated levels of interleukin 6 (IL-6). However, there is a growing body of evidence pointing to a broad and more complex disorder of proinflammatory and antiviral responses with disturbed interferon signaling in COVID-19. METHODS: In this prospective, single-center registry, we included severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients and patients with similar symptoms and severity of disease but negative for SARS-CoV-2 admitted to the emergency department and compared their serum protein expression profiles. RESULTS: IL-6 abundance was similar in SARS-CoV-2-positive patients (n = 24) compared with SARS-CoV-2-negative controls (n = 61). In contrast, we observed a specific upregulation of the immunomodulatory protein progranulin (GRN). High GRN abundance was associated with adverse outcomes and increased expression of IL-6 in COVID-19. CONCLUSIONS: The data from this registry reveal that GRN is specifically upregulated in SARS-CoV-2-positive patients while IL-6 may serve as marker for disease severity. The potential of GRN as a biomarker and a possible impact of increased GRN expression on interferon signaling, virus elimination, and virus-induced lung tissue damage in COVID-19 should be further explored.


Subject(s)
COVID-19/metabolism , Progranulins/metabolism , SARS-CoV-2 , Up-Regulation , Aged , COVID-19/blood , COVID-19/immunology , Case-Control Studies , Female , Humans , Interleukin-6/blood , Interleukin-6/metabolism , Male , Middle Aged , Progranulins/blood , Prospective Studies , Registries , Severity of Illness Index
15.
Nat Med ; 27(1): 78-85, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065910

ABSTRACT

Emerging data indicate that SARS-CoV-2-specific CD8+ T cells targeting different viral proteins are detectable in up to 70% of convalescent individuals1-5. However, very little information is currently available about the abundance, phenotype, functional capacity and fate of pre-existing and induced SARS-CoV-2-specific CD8+ T cell responses during the natural course of SARS-CoV-2 infection. Here, we define a set of optimal and dominant SARS-CoV-2-specific CD8+ T cell epitopes. We also perform a high-resolution ex vivo analysis of pre-existing and induced SARS-CoV-2-specific CD8+ T cells, applying peptide-loaded major histocompatibility complex class I (pMHCI) tetramer technology. We observe rapid induction, prolonged contraction and emergence of heterogeneous and functionally competent cross-reactive and induced memory CD8+ T cell responses in cross-sectionally analyzed individuals with mild disease following SARS-CoV-2 infection and three individuals longitudinally assessed for their T cells pre- and post-SARS-CoV-2 infection. SARS-CoV-2-specific memory CD8+ T cells exhibited functional characteristics comparable to influenza-specific CD8+ T cells and were detectable in SARS-CoV-2 convalescent individuals who were seronegative for anti-SARS-CoV-2 antibodies targeting spike (S) and nucleoprotein (N). These results define cross-reactive and induced SARS-CoV-2-specific CD8+ T cell responses as potentially important determinants of immune protection in mild SARS-CoV-2 infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/blood , Case-Control Studies , Convalescence , Coronavirus Nucleocapsid Proteins/chemistry , Cross Reactions , Cross-Sectional Studies , Epitopes, T-Lymphocyte , Flow Cytometry , HLA-B Antigens/immunology , Humans , Immunologic Memory , Longitudinal Studies , Phosphoproteins/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL